Many advances have been made in pneumatic pipe bursting. Static pipe bursting is unique because it provides an alternative to trenching replacement or pipe bursting. TT Technologies offers all three major types of pipe bursting: pneumatic bursting, HDD mechanical pipe bursting, and HDD pipe bursting. Since their introduction in 1989, these types of pipe bursting equipment have made it possible to effectively use with many different types of pipe, in an almost endless number of situations. In North America alone, over one and a half million feet of pipe was replaced in 2003 using this highly effective method.

In a successful job, old pipe must be compacted outward as it is being burst. However, certain types of tools and host pipe materials, or upsets of more than one pipe size, may cause a front expander to ‘jump’ pipe well ahead of the pneumatic tool, rather than burst from the inside out. In severe cases, pipe pushing may cause blockage and possibly shifting of the tool. A GRUNDOCK tool equipped with a rear expander and a guide head works well to keep the burst working from the inside out, compacting pipe fragments outward.

A Brief History of Pipe Bursting Tool Design

1980: Straight Barrel Tools are designed and used by TT Technologies to revolutionize pipe replacement through pipe bursting.
1983: Dedicated pipe bursting tools and configurations are developed with tool axes and expander configurations.
1988: Straight barrel tool limitations spark the design of rear flair tools to be used with rear expanders.
1992: Rear flair tools become the pipe bursting standard.

Questions & Answers about pipe bursting

Q: How much has pneumatic pipe bursting grown over the last few years?
A: Many advances have been made in pneumatic pipe bursting over the years allowing it to be successfully used with many different types of pipes, in an almost endless number of situations. In North America alone, over one and a half million feet of pipe was replaced in 2003 using the highly effective method.

Q: Does static bursting offer advantages over other types of bursting?
A: Static pipe bursting is unique because it provides contractions to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting. Recent advancements in cutting head technology have made this possible. This is exciting news for gas and water utilities with miles of these pipes that need to be upgraded and replaced.

Q: How much has pneumatic pipe bursting grown over the last few years?
A: Since their introduction in 1989, these types of pipe bursting tools have met limited success, mostly due to difficulty in maintaining line and grade during bursting operations. Since then, innovations have allowed these tools to be effectively used to replace short sections of failing pipe in difficult working conditions.

Q: What types of bursting equipment does TT Technologies offer?
A: TT Technologies offers all three major types of pipe bursting equipment, including pneumatic, HDD, and HDD pipe bursting. TT Technologies offers complete lines of pipe bursting equipment, from start to finish, with each piece of equipment backed by over 40 years of trenchless experience.

Know the Facts

For over 25 years, contractors around the world have been successfully completing project after project with trenchless bursting equipment. During that time literally millions of feet of failing sewer, water, gas and other pipelines have been replaced with reliable and pneumatic equipment. Compare the methods, then see the difference that quality tools, exceptional service and unmatched experience make on your next job.

TT Technologies, the leader in trenchless pipe bursting.
Pipe bursting can be broken down into several main categories: pneumatic, static, and mechanical.

PNEUMATIC Pipe Bursting
- Pneumatic pipe bursting is a method that uses air pressure from a powerful water jet to create a thin jet of water. This method is popular for its simplicity and versatility.
- Advantages:
 - Minimal regular maintenance after 300 to 400 hours of operation
 - Most bursting done manhole to manhole without invert problems
 - Burstable pipe diameters range from 4 inches through 54 inches
 - Wide range of burstable pipe materials including clay, PVC, RCP, ACP, Cast Iron & more
 - Equipment can be used by general contractors
 - Millions of feet replaced since 1980
 - Pneumatic pipe bursting successfully used for 25 years

- Disadvantages:
 - High number of moving parts lead to excessive factory performed maintenance
 - High number of moving parts lead to excessive factory performed maintenance
 - High number of moving parts lead to excessive factory performed maintenance
 - High number of moving parts lead to excessive factory performed maintenance

STATIC Pipe Bursting
- Static pipe bursting involves the use of static friction to force the pipe away from the wall. This method is popular for its simplicity and ease of use.
- Advantages:
 - Frontal tool removal limits time and expense
 - Tool can be safely removed from host pipe

- Disadvantages:
 - Frontal tool removal limits time and expense
 - Tool can be safely removed from host pipe

MECHANICAL HDD Bursting/Backreaming
- Mechanical HDD bursting involves the use of a directional drill to create a hole in the host pipe. This method is popular for its ability to work in difficult ground conditions.
- Advantages:
 - Can be used in hard soils
 - Drillers can dynamically adjust the drill head to maintain a constant torque

- Disadvantages:
 - Can be used in hard soils
 - Drillers can dynamically adjust the drill head to maintain a constant torque
Pipe bursting can be broken down into several main categories: pneumatic, static, and mechanical.

PNEUMATIC Pipe Bursting

Pneumatic pipe bursting is the most used and the most widely used of the three types of bursting. The method is simple. A pneumatic bursting tool is pushed through a fracurable host pipe by a constant tension winch. As the tool travels through the pipe, its percussion action effectively breaks apart the old pipe and displaces the fragments into the surrounding soil. The new pipe, usually HDPE, is pulled simultaneously.

STATIC Pipe Bursting

During the static bursting process, specially designed plates are pulled through an existing line by a hydraulically powered bursting unit. As the bladed rollers are pulled through, they split the host pipe. An expander attached to the rollers forces the fragmentary pipe into the surrounding soil while simultaneously pulling in the new pipe.

MECHANICAL HDD Bursting/Backreaming

Mechanical bursting tools were developed in the late 1980s to be used in combination with horizontal directional drilling units. The goal here is to increase the capabilities of directional drill rigs, making them useful in other markets. These bursting tool heads are attached to the end of a solid steel pipe and pushed through a host pipe. The bursting tool is usually powered by compressed air delivered through the drill stem or by the rotational torque of the drill stem.

ADVANTAGES

- Not suited for water lines with bolted clamps or point repairs.
- Bursting/Backreaming
 - Hard soils are more easily compressed—even with smaller pipe fragments prevented from falling in front of pipe
- Pipe Bursting
 - Better leverage to handle point repairs or misaligned joints.
- Helps to maintain line and grade.
- No Bentonite limits the length of bursting runs.
- Make the Right Method Choice:
 - The new pipe, usually HDPE, is pulled in simultaneously. The directed drill bursting method places massive stress on drill stems, resulting in fatigue and premature drill stem replacement.

DISADVANTAGES

- Static
 - Upsizing more than one size risks host pipe fragments falling apart the old pipe and displacing the fragments into the surrounding soil.
- Pipe Bursting
 - Equipment can be used by general contractors
 - Millions of feet replaced since 1980
 - Bent onite usage specifically geared to enhance bursting operations
 - Pneumatic pipe bursting successfully used for 25 years
- Mechanical HDD Bursting/Backreaming
 - Extremely difficult to maintain line and grade
 - R equires certified drill operator
 - Subs tantial minimum investment required
 - Exis ting above ground structures may be affected
 - No significant history
 - Method largely unsuccessful
 - Potential frac-out
 - High number of moving parts leads to excessive factory performed maintenance
 - High cost of moving parts leads to excessive factory performed maintenance

RISK/CAUTION!

- R equires extended setback from starting point
- Manhole repairs from HDD entry create confined space issues
- Invert line-up in manholes difficult
- Point repairs, joints & clamps will stop drill bursting
- Burstable pipe diameters limited
- Bent onite design creates potential for lateral back ups and host pipe deterioration
- Existing above ground structures may be affected
- Exis ting above ground structures may be affected
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

ADVANCED TOOLS

- Proven method.
- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

TOOL CONFIGURATIONS: PROVEN!

- Proven method.
- Rear removal method limits tool diameter and Bentonite usage
- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

Bursting/Backreaming

- Pneumatic methods were developed in the late 1980s to be used in combination with horizontal directional drilling units. The goal here is to increase the capabilities of directional drill rigs, making them useful in other markets. These bursting tool heads are attached to the end of a solid steel pipe and pushed through a host pipe. The bursting tool is usually powered by compressed air delivered through the drill stem or by the rotational torque of the drill stem.

REAR EXPANDER ADVANTAGES

- 75% of the tool is inside the host pipe ahead of the fracture zone where bursting and upsizing are taking place.
- 35% of the tool is inside the host pipe ahead of the fracture zone where bursting and upsizing are taking place.
- Pipe fragments are prevented from falling in front of pipe bursting tool.
- Helps to maintain line and grade.
- Allows for the use of various grade tools. The tool can be better matched to the type of host pipe.
- Tool can be used for pipe removing or pipe bursting, with front or rear expander, depending on job requirements.
- Easily allows for the use of Bentonite lubricant.
- Tool/expander/guide head configuration allows for larger diameter tools to be used in smaller diameter pipes when more power is needed for tool pull.

FRONT EXPENDER ADVANTAGES

- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

PROVEN!

- Proven method.
- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

TT Technologies, Inc.

- Austin, TX
- www.tttechnologies.com
- 877-262-5867
- TT Technologies is an independent, family owned pipe bursting, HDD, and trenchless solutions company that has been in operation since 1979. We serve all of the United States and Canada.

True Straight Tool FRONT EXPENDER

- Configured for rear tool removal from PE pipes
- Proven method.
- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

Standard Tool • REAR EXPENDER

- Configured for front tool removal from PE pipes
- Proven method.
- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

Straight Barrel Tool • FRONT EXPENDER

- Configured for rear tool removal from PE pipes
- Proven method.
- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

True Straight Tool FRONT EXPENDER

- Configured for rear tool removal from PE pipes
- Proven method.
- Rear removal method limits tool diameter and Bentonite usage
- No Bentonite limits the length of bursting runs.
- Shallower tool oﬀset allows less power and limits burst length or use in hard soils.
- High cost of moving parts leads to excessive factory performed maintenance
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance
- No significant history
- Method largely unsuccessful
- Potential frac-out
- High number of moving parts leads to excessive factory performed maintenance

TT Technologies, Inc.

- Austin, TX
- www.tttechnologies.com
- 877-262-5867
- TT Technologies is an independent, family owned pipe bursting, HDD, and trenchless solutions company that has been in operation since 1979. We serve all of the United States and Canada.
Pipe bursting can be broken down into several main categories: pneumatic, static, and mechanical.

ADVANTAGES

PNEUMATIC Pipe Bursting

- Hard soils are more easily compressed—even with smaller tools.
- Helps to maintain line and grade.
- Keeps tool from jumping out of host pipe.
- No Bentonite limits the length of bursting runs.
- Smaller tool size offers less power and limits burst length.

DISADVANTAGES

- Renting equipment can be expensive.
- Bursts may not be as clean as other methods.
- No Bentonite lubricants available.

STATIC Pipe Bursting

- Bursting/Backreaming
- Pipe Bursting
- Static

- Bursting/Backreaming
- Pipe Bursting
- Static

- Better leverage to handle point repairs or misaligned joints.
- Pipe bursting can be broken down into several main categories: pneumatic, static, and mechanical.

MECHANICAL HDD Bursting/Backreaming

- Mechanical bursting tools were developed in the late 1980s to be used in combination with horizontal directional drilling units. The goal was to increase the capabilities of directional drill rigs, making them useful in other markets. These bursting tool heads are attached to the end of a steel drill and pulled back through a host pipe. The bursting tool is usually powered by compressed air or factory performed maintenance.

ADVANTAGES of Pneumatic & Static Pipe Bursting

- **PROVEN!**
 - Rental equipment available
 - Most bursting done manhole to manhole without invert problems
 - Upsizes of 100% or more possible
 - Burstable pipe diameters range from 4 inches through 54 inches
 - Wide range of suitable pipe materials including clay, PVC, RCP, ACP, Cast Iron & more

- **Millions of feet replaced since 1980**
- **Bent onite usage specifically geared to enhance bursting operations**
- **Pneumatic pipe bursting successfully used for 25 years**

DISADVANTAGES of Mechanical HDD Bursting/Backreaming

- **PROVEN!**
 - Extremely difficult to maintain line and grade
 - Limited to the types of burstable pipes (i.e. cast and reinforced concrete pipe)
 - Burstable pipe diameters limited
 - Diameter varies per tool manufacturer

- **RISK/CAUTION!**
 - Burst success.
 - Potential for uncontrolled back-exploding.
 - Burstable pipe diameters limited
 - Burst success.
 - Potential for uncontrolled back-exploding.

MECHANICAL HDD

- **RISK/CAUTION!**
 - Burst success.
 - Potential for uncontrolled back-exploding.
 - Burstable pipe diameters limited
 - Burst success.
 - Potential for uncontrolled back-exploding.

Pipe bursting equipment

- **ENGINEERING ADVANTAGES**
 - Tool/expander/guide head combination allows larger diameter tools to be used in smaller diameter pipes when more power is needed in hard soils.
 - **Pipe bursting equipment**

- **TOOL CONFIGURATIONS: EXPAND YOUR EXPANDER KNOWLEDGE**

- **PROVEN!**
 - Most bursting done manhole to manhole without invert problems
 - Upsizes of 100% or more possible
 - Burstable pipe diameters range from 4 inches through 54 inches
 - Wide range of suitable pipe materials including clay, PVC, RCP, ACP, Cast Iron & more

- **Millions of feet replaced since 1980**
- **Bent onite usage specifically geared to enhance bursting operations**
- **Pneumatic pipe bursting successfully used for 25 years**

Straight Barrel Tool

- **FRONT EXPANDER**
 - Configured for new tool removal from PE pipes
 - **Pipe bursting equipment**

- **FRONT EXPANDER ADVANTAGES**
 - **PROVEN!**
 - Tool/expander/guide head combination allows larger diameter tools to be used in smaller diameter pipes when more power is needed in hard soils.
 - **Pipe bursting equipment**
25 YEARS of Pipe Bursting

A Brief History of Pipe Bursting Tool Design

1980: Straight Barrel Tools are designed and sold by TT Technologies to revolutionize pipe replacement through pipe bursting.
1985: Rear flair tools and configurations are introduced with tool jaws and expander configurations.
1988: Straight barrel tool limitations spark the design of rear flair tools to be used with rear expanders.
1992: Rear flair tools become the pipe bursting standard.

Questions & Answers about pipe bursting

Q: How much has pneumatic pipe bursting grown over the last few years?
A: Many advances have been made in pneumatic pipe bursting over the years allowing it to be successfully used with many different types of pipe, in an almost endless number of situations. In North America alone, over one and a half million feet of pipe was replaced in 2003 using the highly effective method.

Q: What types of pipe bursting equipment does TT Technologies offer?
A: TT Technologies offers all three major types of pipe bursting equipment: Straight Barrel Tools are designed and sold by TT Technologies to revolutionize pipe replacement through pipe bursting. Rear flair tools and configurations are introduced with tool jaws and expander configurations. Straight Barrel Tools are designed and sold by TT Technologies to revolutionize pipe replacement through pipe bursting.

Know the Facts

For over 25 years, contractors around the world have been successfully completing project after project with trenchless bursting equipment. During that time literally millions of feet of failing sewer, water, gas and other pipelines have been replaced with steel and pyramidal equipment. Compare the methods, then see the difference that quality tools, exceptional service and unmatched experience make on your next job. TT Technologies, the leader in trenchless pipe bursting.

PIPE BURSTING METHODS: a look beneath the surface

HDD Mechanical Pipe Bursting

STATIC Pipe Bursting

PNEUMATIC Pipe Bursting

TT TECH TIPS: avoid tool/expander mismatch

If a tool finds a collapsed section of host pipe, a front expander can lead the tool off track and cause it to stop working. GRUNDYCRACK tools with rear expanders are much more likely to stay inside of the host pipe.

When a front expander encounters sediment in host pipe it can lift the tool off course. GRUNDYCRACK tools equipped with a rear expander are a bit less affected by sediment since the majority of the tool is already inside the host pipe. The tool can then set up a guide to assist in maintaining accuracy and grade, while the bursting takes it to the rear expander. It is recommended to clean out line before all bursts.

Often, tools are available to navigate bends with a large front expander. Smaller GRUNDYCRACK tools with rear expanders are available to better negotiate guide bends in host pipe. A guide head is also effective when used with rear expanders.

Know the Facts

For over 25 years, contractors around the world have been successfully completing project after project with trenchless bursting equipment. During that time literally millions of feet of failing sewer, water, gas and other pipelines have been replaced with steel and pyramidal equipment. Compare the methods, then see the difference that quality tools, exceptional service and unmatched experience make on your next job. TT Technologies, the leader in trenchless pipe bursting.

PIPE BURSTING METHODS: a look beneath the surface

HDD Mechanical Pipe Bursting

STATIC Pipe Bursting

PNEUMATIC Pipe Bursting

TT TECH TIPS: avoid tool/expander mismatch

If a tool finds a collapsed section of host pipe, a front expander can lead the tool off track and cause it to stop working. GRUNDYCRACK tools with rear expanders are much more likely to stay inside of the host pipe.

When a front expander encounters sediment in host pipe it can lift the tool off course. GRUNDYCRACK tools equipped with a rear expander are a bit less affected by sediment since the majority of the tool is already inside the host pipe. The tool can then set up a guide to assist in maintaining accuracy and grade, while the bursting takes it to the rear expander. It is recommended to clean out line before all bursts.

Often, tools are available to navigate bends with a large front expander. Smaller GRUNDYCRACK tools with rear expanders are available to better negotiate guide bends in host pipe. A guide head is also effective when used with rear expanders.

Know the Facts

For over 25 years, contractors around the world have been successfully completing project after project with trenchless bursting equipment. During that time literally millions of feet of failing sewer, water, gas and other pipelines have been replaced with steel and pyramidal equipment. Compare the methods, then see the difference that quality tools, exceptional service and unmatched experience make on your next job. TT Technologies, the leader in trenchless pipe bursting.
Many advances have been made in pneumatic pipe bursting since their introduction in 1989, these types of equipment have made this possible. This is exciting news for gas and water utilities with miles of pipelines have been replaced with static and pneumatic equipment. Compare the methods, then see the difference that quality tools, exceptional service and unmatched experience make on your next job.

A Brief History of Pipe Bursting Tool Design

1980: Static flair tools were designed and used by TT Technologies to revolutionize pipe replacement through pipe bursting.
1983: Designed for pipe bursting tools and accessories equipped with tool axis & expander combination.
1989: Static flair tool limitations spark the design of rear flair tools to be used with rear expanders.
1992: Rear flair tools become the pipe bursting standard.

Questions & Answers:

Q: How much has pneumatic pipe bursting grown over the last few years?
A: Many advances have been made in pneumatic pipe bursting over the years allowing it to be successfully used with many different types of pipe, in an almost endless number of situations. In North America alone, over one and a half million feet of pipe was replaced in 2003 using this highly effective method.

Q: What types of bursting equipment does TT Technologies offer?
A: TT Technologies offers all three major types of pipe bursting equipment: HDD mechanical, static pipe bursting, and pneumatic pipe bursting. Each piece of equipment is backed by over 25 years of trenchless experience.

Q: How much bursting work has been done with mechanical HDD type bursting tools?
A: Since their introduction in 1989, these types of HDD related bursting tools have met limited success, mostly due to difficulty in maintaining line and grade during bursting operations. There are special situations however where these tools can be effectively used to replace short sections of failing pipe in difficult working conditions.

Q: Does static bursting offer advantages over other types of bursting?
A: Static pipe bursting is unique because it provides contractors the means to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting.

Q: How much has pipe bursting technology advanced over the last few years?
A: Recent advancements in cutting head technology have made this possible. This is exciting news for gas and water utilities with miles of these pipes that need to be upgraded and replaced.

Known the Facts

Know the Methods:

For over 25 years, contractors around the world have been successfully completing project after project with trenchless bursting equipment. During that time literally millions of feet of failing sewer, water, gas and other pipelines have been replaced with static and pneumatic equipment. Compare the methods, then see the difference that quality tools, exceptional service and unmatched experience make on your next job.

TT Technologies, the leader in trenchless pipe bursting.

Know the Facts

- Pipeline Bursting
- Pneumatic Bursting
- HDD Mechanical Bursting
- Static Bursting

Know the Methods

For over 25 years, contractors around the world have been successfully completing project after project with trenchless bursting equipment. During that time literally millions of feet of failing sewer, water, gas and other pipelines have been replaced with static and pneumatic equipment. Compare the methods, then see the difference that quality tools, exceptional service and unmatched experience make on your next job.

Or other types of bursting?
A: Static pipe bursting is unique because it provides contractors the means to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting.

Q: Does static bursting offer advantages over other types of bursting?
A: Static pipe bursting is unique because it provides contractors the means to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting.

Q: Does static bursting offer advantages over other types of bursting?
A: Static pipe bursting is unique because it provides contractors the means to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting.

Q: How much bursting work has been done with mechanical HDD type bursting tools?
A: Since their introduction in 1989, these types of HDD related bursting tools have met limited success, mostly due to difficulty in maintaining line and grade during bursting operations. There are special situations however where these tools can be effectively used to replace short sections of failing pipe in difficult working conditions.

Q: Does static bursting offer advantages over other types of bursting?
A: Static pipe bursting is unique because it provides contractors the means to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting.

Q: How much has pneumatic pipe bursting grown over the last few years?
A: Many advances have been made in pneumatic pipe bursting over the years allowing it to be successfully used with many different types of pipe, in an almost endless number of situations. In North America alone, over one and a half million feet of pipe was replaced in 2003 using this highly effective method.

Q: Does static bursting offer advantages over other types of bursting?
A: Static pipe bursting is unique because it provides contractors the means to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting.

Q: How much bursting work has been done with mechanical HDD type bursting tools?
A: Since their introduction in 1989, these types of HDD related bursting tools have met limited success, mostly due to difficulty in maintaining line and grade during bursting operations. There are special situations however where these tools can be effectively used to replace short sections of failing pipe in difficult working conditions.

Q: Does static bursting offer advantages over other types of bursting?
A: Static pipe bursting is unique because it provides contractors the means to burst and replace ductile iron and steel pipe, a limitation of pneumatic bursting.

Q: How much has pneumatic pipe bursting grown over the last few years?
A: Many advances have been made in pneumatic pipe bursting over the years allowing it to be successfully used with many different types of pipe, in an almost endless number of situations. In North America alone, over one and a half million feet of pipe was replaced in 2003 using this highly effective method.